วันเสาร์ที่ 13 กันยายน พ.ศ. 2551

ทฤษฏี Big Bang



Big Bang





The Big Bang is the cosmological model of the universe that is best supported by all lines of scientific evidence and observation. The essential idea is that the universe has expanded from a primordial hot and dense initial condition at some finite time in the past and continues to expand to this day. Georges Lemaître proposed what became known as the Big Bang theory of the origin of the Universe, although he called it his 'hypothesis of the primeval atom'. The framework for the model relies on Albert Einstein's General Relativity as formulated by Alexander Friedmann. After Edwin Hubble discovered in 1929 that the distances to far away galaxies were generally proportional to their redshifts, this observation was taken to indicate that all very distant galaxies and clusters have an apparent velocity directly away from our vantage point. The farther away, the higher the apparent velocity.[1] If the distance between galaxy clusters is increasing today, everything must have been closer together in the past. This idea has been considered in detail back in time to extreme densities and temperatures, and large particle accelerators have been built to experiment on and test such conditions, resulting in significant confirmation of the theory. But these accelerators can only probe so far into such high energy regimes. Without any evidence associated with the earliest instant of the expansion, the Big Bang theory cannot and does not provide any explanation for such an initial condition, rather explaining the general evolution of the universe since that instant. The observed abundances of the light elements throughout the cosmos closely match the calculated predictions for the formation of these elements from nuclear processes in the rapidly expanding and cooling first minutes of the universe, as logically and quantitatively detailed according to Big Bang nucleosynthesis.

Fred Hoyle is credited with coining the phrase 'Big Bang' during a 1949 radio broadcast, as a derisive reference to a theory he did not subscribe to.[2] Hoyle later helped considerably in the effort to figure out the nuclear pathway for building certain heavier elements from lighter ones. After the discovery of the cosmic microwave background radiation in 1964, and especially when its collective frequencies sketched out a blackbody curve, most scientists were fairly convinced by the evidence that some Big Bang scenario must have occurred.




History


Main article: History of the Big Bang theorySee also: Timeline of cosmology and History of astronomy The Big Bang theory developed from observations of the structure of the universe and from theoretical considerations. In 1912 Vesto Slipher measured the first Doppler shift of a "spiral nebula" (spiral nebula is the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way. Ten years later, Alexander Friedmann, a Russian cosmologist and mathematician, derived the Friedmann equations from Albert Einstein's equations of general relativity, showing that the universe might be expanding in contrast to the static universe model advocated by Einstein. In 1924, Edwin Hubble's measurement of the great distance to the nearest spiral nebulae showed that these systems were indeed other galaxies. Independently deriving Friedmann's equations in 1927, Georges Lemaître, a Belgian physicist and Roman Catholic priest, predicted that the recession of the nebulae was due to the expansion of the universe.





In 1931 Lemaître went further and suggested that the evident expansion in forward time required that the universe contracted backwards in time, and would continue to do so until it could contract no further, bringing all the mass of the universe into a single point, a "primeval atom", at a point in time before which time and space did not exist. As such, at this point, the fabric of time and space had not yet come into existence. This perhaps echoed previous speculations about the cosmic egg origin of the universe.
Starting in 1924, Hubble painstakingly developed a series of distance indicators, the forerunner of the
cosmic distance ladder, using the 100-inch (2,500 mm) Hooker telescope at Mount Wilson Observatory. This allowed him to estimate distances to galaxies whose redshifts had already been measured, mostly by Slipher. In 1929, Hubble discovered a correlation between distance and recession velocity—now known as Hubble's law. Lemaître had already shown that this was expected, given the Cosmological Principle.




During the 1930s other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model, the oscillatory universe (originally suggested by Friedmann, but advocated by Einstein and Richard Tolman)[10] and Fritz Zwicky's tired light hypothesis.



After
World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model, whereby new matter would be created as the universe seemed to expand. In this model, the universe is roughly the same at any point in time. The other was Lemaître's Big Bang theory, advocated and developed by George Gamow, who introduced big bang nucleosynthesis and whose associates, Ralph Alpher and Robert Herman, predicted the cosmic microwave background radiation. Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it derisively as "this big bang idea" during a BBC Radio broadcast in March 1949. For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts, began to favor the latter. The discovery and confirmation of the cosmic microwave background radiation in 1964 secured the Big Bang as the best theory of the origin and evolution of the cosmos. Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding the physics of the universe at earlier and earlier times, and reconciling observations with the basic theory.



Huge strides in Big Bang cosmology have been made since the late 1990s as a result of major advances in telescope technology as well as the analysis of copious data from satellites such as COBE, the Hubble Space Telescope and WMAP. Cosmologists now have fairly precise measurement of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the universe appears to be accelerating.

ไม่มีความคิดเห็น: